An in Vitro and in Silico Investigation of the Role of Nmda Receptor Subtypes following Mechanical Injury
نویسندگان
چکیده
The N-methyl D-aspartate receptor (NMDAR), a common glutamate receptor found throughout the brain, has long been implicated as the major mediator of the pathology seen after traumatic brain injury (TBI). However, given their critical role in physiologic function of neural networks, complete inhibition of these receptors is an unsuitable therapeutic strategy. Thus, further investigation into how these receptors respond to injury is required to identify more directed therapeutic targets. Here, we aimed to use two unique experimental models to further investigate the role of NMDARs in the neuronal response to TBI, with specific emphasis on the contribution of different NMDAR subtypes. TBI produces a unique disease paradigm containing mechanical and biochemical components, which can both affect NMDAR activity. We sought to isolate the effects of both these components and then to examine how they combine to create a unique injury response. We utilized a recombinant system expressing known NMDAR subtypes to first examine the action of mechanical stretch on specific subtypes. We demonstrated that mechanosensitivity of the NMDAR is indeed dependent on its subunit composition, with the NR2B subunit conferring stretch sensitivity. Further, we were able to investigate the regulation of NR2B mechanosensitivity and found that a single PKC phosphorylation site on the NR2B C-terminal tail can critically control stretch sensitivity. We next developed a computational model of a single dendritic spine to evaluate the patterns of activation among NMDAR subtypes in both physiologic and pathologic glutamatergic signaling. We demonstrate that the presence of multiple NMDAR subtypes on the dendritic spine enables the ability for a single synapse to produce unique responses to different glutamate inputs. Importantly, we discovered that injury induced release of synaptic glutamate vesicles results in enhanced contribution of NR2B containing receptors. Finally, we have shown that the collective effects of TBI can drastically enhance the calcium influx from synaptic and extrasynaptic NR1/NR2B-NMDARs, an NMDAR subtype known to mediate pro-death signaling. Together, our data demonstrates that the NR2B subunit represents a unique pathologic sensor for TBI, and could represent an intriguing target of manipulation in the development of improved TBI therapeutics. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Dr. David F. Meaney This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/374
منابع مشابه
Interaction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملبررسی دخالت رسپتورهای NMDA در اثر ضد دردی ویتامین C در یک مدل دردنوروپاتیک
Background and Aim: Ascorbate (ascorbic acid) is present in high concentration in the nervous system and is released as a result of activation of glutaminergic neurons. Due to high concentration of NMDA receptors in the nervous system, this study investigated the analgesic efficacy of ascorbic acid (AA) in neuropathic pain condition and the role of NMDA receptors in this effect.Materials an...
متن کاملInteraction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats
Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملThe role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats
Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...
متن کامل